Maximal harmonic group actions on finite graphs

نویسنده

  • Scott Corry
چکیده

This paper studies groups of maximal size acting harmonically on a finite graph. Our main result states that these maximal graph groups are exactly the finite quotients of the modular group Γ = 〈 x, y | x = y = 1 〉 of size at least 6. This characterization may be viewed as a discrete analogue of the description of Hurwitz groups as finite quotients of the (2, 3, 7)-triangle group in the context of holomorphic group actions on Riemann surfaces. In fact, as an immediate consequence of our result, every Hurwitz group is a maximal graph group, and the final section of the paper establishes a direct connection between maximal graphs and Hurwitz surfaces via the theory of combinatorial maps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph-theoretic Hurwitz Groups

This paper studies the analogue of Hurwitz groups and surfaces in the context of harmonic group actions on finite graphs. Our main result states that maximal graph groups are exactly the finite quotients of the modular group Γ = 〈 x, y | x2 = y3 = 1 〉 of size at least 6. As an immediate consequence, every Hurwitz group is a maximal graph group, and the final section of the paper establishes a d...

متن کامل

Harmonic Analysis on Graphs: Maximal Bounds for Cartesian Powers of Finite Graphs

My research in graph theory focuses on asymptotic maximal bounds for Cartesian powers of finite graphs. This line of inquiry was opened up by [4], in which the authors proved that the maximal spherical averaging operator on the N -dimensional hypercube K 2 satisfies a bound in the L 2 norm independent of the dimension N . That is, if Sk(x) := {y : d(x, y) = k} in the graph distance metric on K ...

متن کامل

Harmonic Galois theory for finite graphs

This paper develops a harmonic Galois theory for finite graphs, thereby classifying harmonic branched G-covers of a fixed base X in terms of homomorphisms from a suitable fundamental group of X together with G-inertia structures on X. As applications, we show that finite embedding problems for graphs have proper solutions and prove a Grunwald-Wang type result stating that an arbitrary collectio...

متن کامل

Critical groups of graphs with dihedral actions II

In this paper we consider the critical group of finite connected graphs which admit harmonic actions by the dihedral group Dn, extending earlier work by the author and Criel Merino. In particular, we show that the critical group of such a graph can be decomposed in terms of the critical groups of the quotients of the graph by certain subgroups of the automorphism group. This is analogous to a t...

متن کامل

Critical groups of graphs with dihedral actions

In this paper we consider the critical group of finite connected graphs which admit harmonic actions by the dihedral group Dn. In particular, we show that if the orbits of the Dn-action all have either n or 2n points then the critical group of such a graph can be decomposed in terms of the critical groups of the quotients of the graph by certain subgroups of the automorphism group. This is anal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 338  شماره 

صفحات  -

تاریخ انتشار 2015